Is MAP Decoding All You Need?

The Inadequacy of the Mode in Neural Machine Translation

Bryan Eikema Wilker Aziz

University of Amsterdam

COLING 2020, Barcelona, Spain

Key Takeaways

We question the use of MAP decoding in NMT

We show that:

- MAP decoding **introduces biases**
- The mode is a very **rare event**
- NMT models capture data statistics well

We argue that:

- MAP decoding is **not suitable** for NMT
- We should base model criticism and predictions on **unbiased samples**

Neural Machine Translation (NMT)

NMT is trained as probabilistic model using maximum likelihood estimation (MLE)

We generate translations using *maximum a-posteriori* (MAP) decoding:

$$y^{mode} = argmax_y P(y | x, \theta_{MLE})$$

Finding the exact MAP is intractable, so we use an approximation: beam search

Pathologies and Biases of NMT

- Length bias
- Beam search curse
- Inadequacy of the mode
- Exposure bias
- Non-admissible heuristic search bias

Many works blame NMT as a model or its training algorithm

But note: all these observations are using approximate MAP decoding

Biased Statistics & The Inadequacy of the Mode

We use the mode for **model criticism**, but:

- The mode is **no unbiased statistic** of the learnt distribution
 - e.g. a short mode does not imply that the model underestimates average sequence length!

We target the mode for **making predictions**, but:

- The mode could still be a **very rare event**
- Focusing on the mode alone **throws away a lot of valuable information** learnt by the model

Experiments

We will be answering:

- 1. Does the NMT model fit the data well?
- 2. What do the learnt distributions look like?
- 3. Can we make predictions using all of the information available?

Experiments

Assessing Data Fit

Assessing Data Fit: Methodology

- 1. Gather statistics from data, unbiased samples, and beam search outputs
- 2. Model all data in a hierarchical Bayesian model
- 3. Compare posteriors between data and model output

We compare:

- Length
- Lexical properties: unigram and bigram counts
- Word order: skip-bigram counts

In most cases the model captures length reasonably well

Beam search shifts from data statistics, underestimating length

Assessing Data Fit: Lexical Statistics

Assessing Data Fit: Lexical Statistics

In most cases the model captures lexical statistics reasonably well

Assessing Data Fit: Lexical Statistics

Beam search shifts from data statistics, changing lexical characteristics

Assessing Data Fit: Word Order

Assessing Data Fit: Word Order

In most cases the model captures word order statistics reasonably well

Assessing Data Fit: Word Order

Beam search shifts from data statistics, affecting word order

Properties of Translation Distributions

Spread of the Translation Distribution

NMT spreads mass over many translations

Sampling the Mode

Beam search:

For most input sequences, the beam search output was **not drawn after 1,000 samples** (>50% high-resource, >90% low-resource)

Empty Sequence:

In fewer than 35% of input sequences the empty string is drawn, but if drawn it **only occurs roughly once in 1,000 samples**

A small number of samples contains good translations

A Sampling-Based Decoding Method

Minimum Bayes Risk (MBR) Decoding

- Maximize expected utility, e.g. METEOR
- But we don't have the reference
- Use the translation distribution to fill in the reference
- Use **unbiased samples** to approximate the objective

Properties:

- Makes use of the translation distribution as a whole
- Approximation gets better with more samples
- Doesn't suffer from the aforementioned pathologies and biases, only poor fit

Using 30 samples:

	Beam Search	MBR Decoding	Oracle Decoding
High-Resource	37.1	34.4	38.3
Low-Resource	24.3	26.0	28.9
All	28.6	28.8	32.0

Using 30 samples:

	Beam Search	MBR Decoding	Oracle Decoding
High-Resource	37.1	34.4	38.3
Low-Resource	24.3	26.0	28.9
All	28.6	28.8	32.0

Beam search outperforms MBR in high-resource setting

Using 30 samples:

	Beam Search	MBR Decoding	Oracle Decoding
High-Resource	37.1	34.4	38.3
Low-Resource	24.3	26.0	28.9
All	28.6	28.8	32.0

MBR decoding outperforms beam search in low-resource settings

Using 30 samples:

	Beam Search	MBR Decoding	Oracle Decoding
High-Resource	37.1	34.4	38.3
Low-Resource	24.3	26.0	28.9
All	28.6	28.8	32.0

The gap with oracle decoding shows there is a lot of room for improvement

We should not be doing MAP decoding in NMT

MAP decoding **introduces biases** to NMT

Translation distributions **do capture data statistics well**

Sampling-based decision rules show great potential